ISIT95

Low-Rate Turbo Codes for Deep-Space Communications !

D. Divsalar and F. Pollara
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109

Turbo codes were recently proposed by Berrou, Glavieux and Thitimajshima [2] and claimed to achieve near
Shannon-limit error correction performance with relatively simple component codes and large interleaves.
A required Ep/N, of 0.7 dB was reported for BER of 10 *°, using a rate 1/2 turbo code [2]. However,
some important details that are necessary to reproduce these results were omitted. This article confirms
the accuracy of these claims, and presents a complete description of an encoder/decoder pair that could
be suitable for deep-space applications, where lower rate codes can be used. We describe a new simple
method for trellis termination, we analyze the effect of interleave choice on the weight distribution of the
code, and we introduce the use of unequal rate and multiple component codes.

The codes considered in this article consist of the parallel concatenation of two or more convolutional
codes with a random interleave between each encoder. Fig, 1(a) illustrates a particular example that
will be used in this article to verify the performance of these codes. This encoder contains two recursive
binary convolutional encoders, with M and M2 memory cells respectively. In general, the two component
encoders may not be identical. The first component encoder operates directly on the information bit
sequence U = (u1,.... uy) Of length N, producing the two output sequences Xi; and X, The second
component encoder operates on areordered sequence of information bitsu’ produced by an interleaver of
length N, and outputs the two sequences x2; and X2,,. Theinterleaver is apseudo-random block scrambler
defined by a permutation of N elements with no repetitions: a complete block is read into the the interleave
and read out in a specified permuted order. Figure 1(a) shows an example where arate r = 1/n=1/4
code is generated by two component codes with M;=: M,= M ==4, producing the outputs xi; = u,
Xip u~i’f,xzi = v and Xzp=u- ﬁ; where the generator polynomials g, and §» have octal representation
21 and 37, respectively. Note that various code rates can be obtained by puncturing the outputs.

Trellis Termination — We use the encoder in Fig, 1(a) to generate a (n (N + M), N) block code, Since the
component encoders are recursive, it is not sufficient to set the last M information bits to zero in order to
drive the encoder to the al zero state, i.e. to terminate the trellis, The termination (tail) sequence depends on
the state of each component encoder after N bits, which makes it impossible to terminate both component
encoders with the same M bits. Fortunately, the simple stratagem illustrated in Fig. 1 (b) is sufficient to
terminate the trellis. Here the switch is in position “A” for the first N clock cycles and isin position “B” for
M additional cycles, which will flush the encoders with zeros. The decoder does not assume knowledge
of the M tail bits.

Weight Distribution — In order to estimate the performance of a code it is necessary to have information
about its minimum distance d, weight distribution, or actual code geometry, depending on the accuracy
required for the bounds or approximations. The example of turbo code shown in Fig. 1 (a) produces two sets
of codewords xI = (x,, x1,) and X,= (X,, X2p), Whose weights can be casily computed. The challenge
isin finding the pairing of codewords from each set, induced by a particular interleave. Intuitively, wc
would like to avoid pairing low-weight codewords from one encoder withlow-weight words from the other
encoder. Many such pairings can be avoided by proper design of the interleaver. However, if the encoders
are not recursive, the low-weight codeword generated by the input sequence u = (00. . . 0000100 . . . 000)
with a single “1” will always appear again in the second encoder, for any choice of interleave. This
motivates the use of recursive encoders, where the key ingredient is the recursiveness and not the fact
that the encoders are systematic. For our example, the input sequence u = (00. . .0010000100 . . . 000)

‘The research described in this summary was carried out at the Jet Piopulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space Administration,

generates the minimum weight codeword (weight==6). If the interleaver does not properly “break” this input
pattern, the resulting minimum distance will be 12.

However, the minimum distance is not the most important quantity of the code, except for its asymptotic
performance, at very high E,/N,. At moderate SNRs, the weight distribution at the first several possi-
ble weights is necessary to compute the code per formance. Estimating the complete weight distribution
for large N is still an open problem for these codes. We have investigated the effect of the interleaver
on the weight distribution on a small-scale example where N = 16. This yields an (80,16) code whose
weight distribution can be found by exhaustive enumeration. A good choice of the interleave can increase
the minimum distance from 12 to 16, and, more importantly, can reduce the count of codewords at low
weights. We have computed the weight distribution obtained by using no interleaver, a reverse permu-
tation, and a 4 x 4 block interleaver, all with d == 12. Better weight distributions are obtained by the
“random” permutation {2,13,0,3,1 1 ,15,6,14,8,9,10,4,12,1 ,7,5) with d = 12, and by the best found permu-
tation {12,13,14,9,1 1,1 5,7,6,10,3,8,4,0,1,2,5} with d= 16 (The best known (80,16) linear block code has
minimum distance 28). For interleaver length N == 1024 we were only able to enumerate all codewords
produced by input sequences with weights 1, 2, and 3. This again confirmed the importance of the inter-
leave choice for reducing the number of low-weight codewords. Better weight distributions were obtained
by using “random” permutations than by structured permutations, as block or reverse permutations.

For the (80,1 6) code using the best found permutation we have compared the performance of a maximum

likelihood decoder (obtained by simulation) to that of a turbo decoder with 10 iterations described later,
and to the union bound computed from the weight distribution. The performance of the turbo decoder is
only dightly suboptimum.
Turbo Decoding— Let u; be a binary random variable taking valuesin {-I1-1,—-1 }, representing the sequence
of information bits. The MAP algorithm [1] provides the log likelihood ratio L(k) = log %)glven
the received symbolsy. The sign of L (k) is an estimate #x of ux and the magnitude |L (k)| is the reliability
of this estimate, as suggested in [3].

The channel model is shown in Fig. 2 where the n1;;’s and the 1, ’s arei.i.d. zero mean Gaussian
random variables with unit variance, and p=+/2E;/N, = /2r E;/N,, is the signal-to-noise ratio. A
similar model applies for encoder 2.

Given the turbo code structure in Fig. 1(a), the optimum decoding rule maximizes either P (ux|y1,¥2)
(Minimum bit error probability rule) or P(uly;,¥2) (Maximum likelihood sequence rule). Since this rule is
obviously too complex to compute., we resort to a suboptimum decoding rule [2,3] that uses separately the
two observations y,and y,, as shown in Fig, 3. Each decoder in Fig. 3 computes the a posteriori probabilities
P(uilyi,0i),i = 1,2 (see Fig. 4a), or equivalently the log-likelihood ratio Li(k)=log P(Z*—_f::L‘é—)
where ii; is provided by decoder 2 and 12 is provided by decoder 1 (see Fig. 4b). The quantities u;
correspond to “new data estimates’, “Innovations’ or “extrinsic information” provided by decoders1and
2, that can be used to generate a priori probabilities on the information sequence u for branch metric
computation in each decoder.

The question is how to generate the probabilities P (i, x [tx) that should be used for computation of
the branch transition probabilities in MAP decoding. It can be shown that the probabilities P (u,li#i.x) or

equivalently log ;EZ:T”Z—:—; i ==, 2, can be used instead of P (it; |ux) for branch metric computations in
the decoders. When decoder 1 generates P (u|it2) or log -fris=2 (uk_ 11433 for decoder 2, this quantity should
not include the contribution due to i .« which has been alrcady generated by decoder 2. Thus we should

have

Iog P(u; = +1la2.1) _ Plug =41y a1, - - B k10 81441, - JUILN)
Plue = —1Mu2k) = “PQug = =1y, 10, - o« W k-1 H Lk 1y - - oo UL, N)

(1)

To compute log Plu=11é24) \ya note that (See Fig. 4a)

Pug=—1li2x)

PQuplyr, ity n, ol g—1 B1kgs o, By N PG U, Y B o B et B gy - - TN

Purly;, i) = - = = . =
PGy glyn, @1, ooy gty s 1y - ULN))

Sinceit 4 was generated by decoder 2 and de-interleaving is used, this quantity depends only weakly on
yiand &, j, j# k. Thus we can have the following approximation

Py lug, Yoo g1y ooy Bl gty @) gty - oo U N) R Py g lug) = 2P (ugliny 1) P (g). (3)
Using eq.3in eq. 2 we oblain

PQuglyn,) PGoielys, i, oo s B k=1 B g 1o o o, UL N
2P (ugliy i) Py i)

PQuilyr, dy g, s Blk=1s U1kl ..., i N) ="

(4)
It is preferable to work with likelihood ratios to avoid computing probabilities not involving u; (see
Fig.4b), and to define Li (K) == log ;EZ::}HZ:; i =1, 2. From cqs.1 and 4 we obtain L") (k) =

L k) - lf}"‘ 1)(k) at the output of decoder ‘1, before interleaving, for the mth iteration. Similarly we
can obtain L*,"")(K) = L~(K) -- Iig"')(k) at the output of decoder 2, after deinterleaving. Using the above
definitions, the a priori probabilities can be computed as

eli®)

Pug == +1u; 1) = T_em_) =1~ P =-1uy), i =12 (5)

Then the update equation for the mth iteration of the decoder in Fig. 3 becomes

7 (m) ~{m— m m
LR =L P T an L5V - L W], = 1. (6)

This looks like the update equation of a steepest descent method, where [)$(k) — L 5"’) (K)] represent the
rate of change of L(k) for agiven u;, and «,, is the step size.

Figure 5 shows the probability density function of 1. (k) at the output of the second decoder in Fig. 1 (a),
after de-interleaving and given i« = +1. Asshown in Fig. 5, this density function shifts to the right as the
number m of iterations increases. The area under each density function to the |eft of the origin represents
the bit error rate, if decoding stops after m iterations.

At this point certain observations can be made. Note that L, (k') at the input of decoder 2 includes an
additive component 20y1ix, which contributes to the branch metric computations in decoder 2 at observation
Y2ik- Thisimproves by 3 dB the signal-to-noise ratio of the noisy information symbols at the input of decoder
2. Similar arguments hold for L (k). An apparently more powerful decoding structure can be considered,
as shown in Fig .6.

However, the performance of the decoding structures in Fig .6 and Fig .3 is equivalent for a large
number of iterations (the actual difference is one half iteration). If the structure in Fig .6 is used, then the
log-likelihood ratio L2 (k) fed to decoder 2 should not depend on #1x and yy,,., and similarly L (k) should
not depend on 42« and ¥4~ Using analogous derivations based on eqs. 1 through 4, we obtain

Lo(k) = L1(k) — Ly (k) = 2y

Ly (K =La(k) — Lak) = 20Y24

wherey; isthe sum of y, with the deinterleaved version of y»; and y5; is the sum of y, with the interleaved
version of Y1:. Thus, the net effect of the decoding structurein Fig. 6 isto explicitly pass to decoder 2 the

information contained in y,; (and vice-versa), but to remove the identical term from the input log-likelihood
ratio.

Performance. The performance obtained by turbo decoding the code in Yig. 1(a) with random permutations
of lengths N = 4096 and N = 16384 is compared in Fig. 7 to the capacity of a binary-input Gaussian
channel for rate » = 1/4, and to the performance of a (15,1/4) convolutional code originally developed at
JPL for the Galileo mission. At BER=5 x 102, the turbo code is better than the (1 5,1 /4) code by 0.25 dB
for N = 4096, and by 0.4 dB for N = 16384.

So far we have considered only component codes with identical rates, as shown in Fig. 1 (a). Now we

propose to extend the results to encoders with unequal rates, as shown in Fig. 8. This structure improves
the performance of the overall, rate 1/4, code, as shown in Fig.7. The gains at BER=5x 107" relative to
the (15,1/4) code are 0.55 dB for N = 4096, and 0.7 dB for N = 16384. For both cases, the performance
iswithin 1dB of the Shannon limit at BER=5 x 10~? and the gap narrows to 0.7 dB for N = 16384 at low
BER.
Conclusions. Wc have shown how turbo codes and decoders can be used to improve the coding gain for
deep-space communications, while decreasing the decoding complexity with respect to the large constraint
length convolutional codes currently inuse. Further analysis is needed to improve our understanding of
the influence of the interleaver choice on the code perforinance, to explore the sensitivity of the decoder
performance to the precision with which we can estimate £,/ N,, and to establish whether there might be
aflattening of the performance. curves at higher £»/N,, as it appears in one of the curvesin Fig. 7. An
interesting theoretical question is to determine “how random” these codes can be so as to draw conclusions
on their performance based on comparison with random coding bounds.

Similar code constructions were used to build rnriltiple-encoder turbo codes. This generalizes the turbo
decoding concept to atruly distributed decoding system where each sub-decoder works on a piece of the
total observation and tentat ive estimates are shared among decoders until an acceptable degree of consensus
is reached.

References
[1] L. Bahl, J. Cocke, F. Jetinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate (Abstract),” in

1972 Int. Symp. Information Theory, p. 90, May 1972.
[2] C. Berrou, A. Glavicux, and P. Thitimajshima, “Near shannon limiit error-correcting coding and decoding: Turbo-codes,” in

Proc. ICC "93, May 1993.
[3] J. Hagenauer and P. Robertson, “Iterative (Turbo) decoding of systematic convolutional codes with the MAP and SOVA

agorithms’, Proc. of the ITG conference “Source and channel coding”, Oct. 1994, Frankfurt.

u
r = Xq;

N /[V::-g;wde{f“*—“ o xp [BC%{E{J '—1
Imarleaver p N , 9 ' [l
Téﬁ{_ le]lr - s

— e - Agp

AN

L/

-
L]
i
S
lo]

Encoder 2

(b)

Figure 1: (a) Example of encoder. (b) Trellis Termination

Y1j——o /
Y1 {

Ny,
_____-——‘>(>*’g>‘—> yyi=p U4
--—»D—"?}‘_' Y1p=p X1

"1p

Encoder 1

Y

Figure 2: Channel model.

Ny

p + h1p

Feedback
: : : Lot
L | T e :?, [
interleaver Deinterleaver
Decoder - _' . Decgder

Decoded

Bits

Ly : .
— |— - N Bit -
flrns;ts Yip /;’7 L? L [)ointerlleavev J_
Matched X)
Filter Yai
Y2 {
vy I
Figure 3: Turbo Decoder
. Plu=+1a,) Pl Ye e By g o y)
1,2(/») = log Pl iy) =1 I b e A I
- EXTRINSIC L. (k)
Y __J INFORMATION RN
MAP MAP
.| Decoder1 | ____ A POSTERIORI 1 Decoder 1
Yi PROBABILITY N

PROBABILITY DENSITY FUNCTION OF L4(k)

P(ugly1. 1)

@

Figure 4: input/outputofM APdecodcr

Ep/N,=0.3dB
r.1/4
N= 4096
m=1
- J— S
) 0 1 [20

NOT RELIABLE RE LIABILITY VALUE,

DECODING ERROR CORRECT DECUDING

Figure 5: Reliability function

- 30
L1(k) RELIABLE

L(k)~ L (k)

Fecdback
- - N Bit » - N Bit
T Inlaf!eavet} Dsinterieaver
vii (> De(;oder \\ - Decoder T
F SR AR Y&
Lo — . N Bit
Inputs Yip /}/ | Deinterisaver
from
Matched Yoi
Filter

Yop 1 —J_

| NBil J
Interleaver

Decoded
NBit Output Bits
Deinterleaver

Figure 6: Equivalent turbo decoder

10 1 A4 [U NI SN SIS .
RATE = 1/4
107
@
ur
<]
z
E
£
3
10~ ~
o
o F:
> o z
‘o U
> 2)
9] % iy
3 o p
@ =
@ X
z
" >
10 3
<
z
v
C
d
..5
. . — . SO
-1.5 1.0 0.5 0.0 0.5 1.0 15
Ep/Ng, dB

Figure 7: Turbo codes performance, r =:1/4

Encoder 1

v

NB
Int,

- Xy

it
erleaver

e I WV

-

Encoder 2

Figure 8: Two-rate encoder

